
Testing
2013 IOI Camp 1

Robert Spencer

December 11, 2013

Robert Spencer Testing 1/8



Introduction

Testing is one of the most important and most overlooked aspects
of olympiads.

More important in training (detailed feedback).
Also useful for finding and fixing bugs.

Robert Spencer Testing 2/8



Introduction

Testing is one of the most important and most overlooked aspects
of olympiads.
More important in training (detailed feedback).

Also useful for finding and fixing bugs.

Robert Spencer Testing 2/8



Introduction

Testing is one of the most important and most overlooked aspects
of olympiads.
More important in training (detailed feedback).
Also useful for finding and fixing bugs.

Robert Spencer Testing 2/8



Introduction

Testing is one of the most important and most overlooked aspects
of olympiads.
More important in training (detailed feedback).
Also useful for finding and fixing bugs.

Robert Spencer Testing 2/8



Basics

Test by giving your program multiple inputs before submitting (if
time is no object).

Here multiple test cases in files are very useful.

program < testcase

Have a slow brute force that you can compare answers against.
Use printing (even if you are not debugging) and asserts.

Robert Spencer Testing 3/8



Basics

Test by giving your program multiple inputs before submitting (if
time is no object).
Here multiple test cases in files are very useful.

program < testcase

Have a slow brute force that you can compare answers against.
Use printing (even if you are not debugging) and asserts.

Robert Spencer Testing 3/8



Basics

Test by giving your program multiple inputs before submitting (if
time is no object).
Here multiple test cases in files are very useful.

program < testcase

Have a slow brute force that you can compare answers against.
Use printing (even if you are not debugging) and asserts.

Robert Spencer Testing 3/8



Basics

Test by giving your program multiple inputs before submitting (if
time is no object).
Here multiple test cases in files are very useful.

program < testcase

Have a slow brute force that you can compare answers against.

Use printing (even if you are not debugging) and asserts.

Robert Spencer Testing 3/8



Basics

Test by giving your program multiple inputs before submitting (if
time is no object).
Here multiple test cases in files are very useful.

program < testcase

Have a slow brute force that you can compare answers against.
Use printing (even if you are not debugging) and asserts.

Robert Spencer Testing 3/8



Makers

Write sample input makers. Here scripting languages are useful.

import random

print 1000

for i in range(1000):

print random.randint(1,1000000),

And then use files:

$ python maker.py > input

$ program < input > output

($ bruteforce < input > bruteoutput

$ diff output bruteoutput)

Robert Spencer Testing 4/8



Makers

Write sample input makers. Here scripting languages are useful.

import random

print 1000

for i in range(1000):

print random.randint(1,1000000),

And then use files:

$ python maker.py > input

$ program < input > output

($ bruteforce < input > bruteoutput

$ diff output bruteoutput)

Robert Spencer Testing 4/8



Makers

Write sample input makers. Here scripting languages are useful.

import random

print 1000

for i in range(1000):

print random.randint(1,1000000),

And then use files:

$ python maker.py > input

$ program < input > output

($ bruteforce < input > bruteoutput

$ diff output bruteoutput)

Robert Spencer Testing 4/8



Corner Cases

Don’t forget corner cases:

N = 0, 1

M = N

All values the same

All values different

Values not consecutive (!)

“There are two things I hate in life:off by one errors”

Robert Spencer Testing 5/8



Corner Cases

Don’t forget corner cases:

N = 0, 1

M = N

All values the same

All values different

Values not consecutive (!)

“There are two things I hate in life:

off by one errors”

Robert Spencer Testing 5/8



Corner Cases

Don’t forget corner cases:

N = 0, 1

M = N

All values the same

All values different

Values not consecutive (!)

“There are two things I hate in life:off by one errors”

Robert Spencer Testing 5/8



Read and Use the Constraints

Try to use the full range of the constraints.

If 1 ≤ N ≤ 106, make a case where N = 106.

Robert Spencer Testing 6/8



Read and Use the Constraints

Try to use the full range of the constraints.
If 1 ≤ N ≤ 106, make a case where N = 106.

Robert Spencer Testing 6/8



Use the Server

Use the server given testing facilties.

The server may behave slightly differently (memory bugs, time).
At IOI, you get a lot of data back from the server.

Robert Spencer Testing 7/8



Use the Server

Use the server given testing facilties.
The server may behave slightly differently (memory bugs, time).

At IOI, you get a lot of data back from the server.

Robert Spencer Testing 7/8



Use the Server

Use the server given testing facilties.
The server may behave slightly differently (memory bugs, time).
At IOI, you get a lot of data back from the server.

Robert Spencer Testing 7/8



The Common Pitfalls

Most people test far to little. In general, unless you know that your
solution is correct and cannot at all break it, you should not be
satisfied that you have tested enough.

Robert Spencer Testing 8/8


